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"Dreifach ist der Schritt der Zei t : . . ."  
Schiller: Spriiche des Konfuzius 

In a previous note, an exceptional space-time lattice was found by a roundabout 
heuristic process. This process was far from convincing; here a more translucent 
characterization of the lattice is presented. A cornerstone is the consideration of 
pairs of reciprocal lattices, together with the basic symmetry ($4) of the metric 
tensor, The basic requirement is that one member of a pair of reciprocal lattices 
contains the other as a sublattice. One preferred lattice is discussed in some 
detail; it contains three copies of its reciprocal lattice, and it is the simplest 
example satisfying the requirements. In the expression of the metric tensor in 
terms of the lattice generators a possible topology on the lattice is suggested. By 
means of this topology, propagation of spinor waves can be formulated. This 
proposed--the simplest--propagation mechanism is inhibited, though, by the 
fact that the three sublattices are required to carry the two types of spinors 
alternatively. This inhibition can be lifted by introducing a second type of 
elementary propagation, to next nearest neighbors. If this inhibition is only 
feebly lifted, this would result in particles with mass small as compared to the 
inverse of the lattice constant, presumably the Planck mass. Including the 
propagation to next nearest neighbors leads to spinor waves with six compo- 
nents, two components for each sublattice. In the long-wavelength limit four of 
them obey a massive Dirac equation, while the remaining two obey a Weyl 
equation. These considerations conceivably provide a root for the lack of parity 
invariance in nature, and for the joint occurrence of pairs of massive and 
massless spinor waves. The construction, furthermore, allows one to accommo- 
date just three different families of spinor waves of this type. Extension of the 
above arguments outside the realm of the long.wavelength limit forcibly makes 
the lattice concept independent of the original continuous Minkowski space- 
time: the latter is no longer a unique embedding space for the lattice, but 
appears as an approximate interpolation, valid near the long-wavelength limit. 
This may be the minimal requirement to be imposed on a lattice theory in the 
light of the empirical evidence, if the scale of the lattice structure is, compared 
to the empirical scales, as small as the Planck scale. 
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1. A SPACE-TIME LATTICE: SKETCH OF AN ARGUMENTATION 

Consider in a four-dimensional affine space a set of four contravariant 
vectors b~ and its reciprocal set of four covariant vectors a~ v. The x, ,~ 
denote the space-time indices, the M, N distinguish the four vectors. The 
reciprocity is expressed by 

N ir a,~b~ = 6 ~  

Consider the contra- and covariant lattices 

{L(a)}: vNb~ 

where/L M and V~v are =0 mod 1. 
The b and a can be taken as bases of the coordinate systems for the 

contra- and covariant vector spaces, respectively: 

b~ = fi~, aS = fix 

The lattices L(a) and L(b) can be compared after introduction of a 
metric tensor, which thus finds its fundamental role in the framework of a 
lattice theory: 

bM,~ = g,~b~ = g,:M 

At this point a reasonable symmetry requirement for the metric tensor 
is introduced. As is well known, quadratic forms that are permutation 
symmetric in the coordinates will be either definite or have a signature with 
one deviating sign, so that a permutation-symmetric form of the metric 
tensor is possible in Minkowski space-time. It is assumed that the coordi- 
nates defined by the pair of reciprocal lattices L(a) and L(b) are such that 
the metric tensor assumes this permutation-symmetric form. This assump- 
tion seems natural, as the four generators of the lattices will play equivalent 
roles. A permutation-symmetric g~z depends on only two parameters: 

( g ~ =  r/ 

The parameters r and q are restricted only by the requirement that the 
metric be Minkowskian rather than definite. This condition reads 

(~ + 3n)( r  - n)3 < 0 
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that is, for positive, q, 

t/ > -  4/3 and tl > 

(correspondingly for negative r/). 
The smallest pointset, for the combination of L(a) and L(b), is 

obtained by the requirement that one of  the pair of lattices be a sublattice 
of the other. In view of the equivalence of  the roles played by the two 
lattices, it is no restriction to assume that L(b) be a sublattice of L(a). 

Expressing now bM~ in terms of the a~ ~ by means of the foregoing 
explicit formulas yields 

b l~ = ~a~ 1 + r/(a~ 2 + a~ 3 + a~ 4) cycl 

L(b) is a sublattice o f  L(a) only i f  ~ and tl are integers. 
In general L(a) contains a number of  congruent copies of L(b); that 

multiplicity, B, is given by the determinant of the four vectors b~M, the 
volume of  the unit cell of  the b-lattice in terms of that of  the a-lattice: 

B = (3~  + 0 ( ~  - 0 3 

The lowest multiplicity compatible with the conditions on ~ and r/ is 
three, the value obtained for ~ = 0, t / =  1. 2 The a-lattice then has three 
consecutive sublattices L(b; 1), L(b; 2), L(b; 3), which are arranged in cyclic 
order as will be explained below. 

Some properties of this exceptional lattice are the following: 
(i) b M �9 b N = 1 - 31viN , a M .  a N = 1/3 - (~MN 

(ii) a M. a ~  1/3 VM = 1 . . . . .  4, where a ~ = - ~4 a M. 
(iii) b l = a  2 + a  3 + a  4 c y c l , o r b  l = - a  ~  I. 
(iv) b M - b u = a N - a M ,  a N - a M =- 0 mod b, M, N = 1 . . . . .  4. 
(V) - - a  0 - -  a N = 0 rood b, N = 1 . . . . .  4. 
(vi) Let P be a point on L(b; j ) ,  one of  the sublattices; then translating 

P by - - a  N to Q N  yields always a point on L ( b ; j +  1), for the four 
translations - a  N with N = 1 . . . .  ,4,  as well as for the translation a ~ 

(vii) a L + a M + a N =- 0 mod b. 
(viii) Finally, another identity is to be noted: the specific metric tensor 

M by (4 = 0, t / =  1) can be expressed in terms of  the a~ 

g~a af t  a ~ aK a~ o o = -- =a~a;. -Eaffa~. 
M M 

or, with the abbreviations 

Go0 = 1, GMM = --1, all other GMN = 0 

2Finkelstein and Gibbs (1993) reach the same form for the line element along somewhat 
different lines. 
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by 
M N g,~,~ = GMNa,r a~ summed over M, N = 0, 1 . . . . .  4 

which is the initial assumption in Wouthuysen (1993) [hereafter referred to 
as (I)]. 

The property (viii) suggests a topology in the a-lattice consistent with 
the symmetry group $4, the symmetry of the four generators of the lattice. 
The five points obtained from an arbitrary point P in L(a) by translation 
over - a  M, a ~ are defined to be the neighbors of P. Note the one-sidedness 
of this definition: all five neighbors of P cL (b ; j )  are situated on 
L(b;j  + 1), where j + 1 is taken modulo 3. They are the only points with 
that property that share a unit cell with P. 

A more direct motivation for the remarkable composite lattice of (I) 
has thus been sketched. The motivation is not a derivation, evidently, but 
it puts in relief a basis for the objective existence, in Minkowski space-time, 
of a class of exceptional lattices. 

2. FURTHER PROPERTIES 

The a-lattice has net-spaces of three dimensions which, viewed in an 
appropriate coordinate frame, are spaces of constant time. The three- 
dimensional lattice in such a cross section is a cubic closest packing. The 
lattice L(a) can most conveniently be visualized as the succession in time of 
these cross-section spaces. In consecutive cross sections the three-lattices 
are translated with respect to each other by a standard three-vector. The 
situation can be visualized by remarking that the cubic closest packing can 
be considered as the configuration of the vertices of a set of identical--in 
size and orientation--tetrahedrons, four of which meet in every vertex. 
The centers of these tetrahedrons again are arranged in a cubic closest 
packing configuration, and they form the next three-dimensional cross 
section of L(a). After four steps the original configuration is recovered: the 
pattern repeats itself with period four. 

Numbering these net-space configurations by Cl . . . .  , c4, the lattice L(a) 
is built according to the scheme 

whereas 

and 

etc. 

L(a): Cl c2 c3 c4 Cl c2 c3 c4 el c2 c3 c4 �9 �9 �9 

L(b; 1): Cl c4 c3 c2 c1" '"  

L(b; 2): c 2 c I c 4 c 3 c 2 * * �9 
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The configuration cj+l arises from cj by contracting each one of its 
tetrahedrons to its respective center; cj is obtained from cj + ~ by the reverse 
construction. 

3. FIELDS AND FIELD EQUATIONS 

The exceptional lattice admits as its local invariance group the permu- 
tation group $4, that is, the group of permutations of four objects, in every 
point of L(a). 

This group has, among others, a two-dimensional complex representa- 
tion. It can be visualized as the spinor representation of the rotations that 
leave a cube invariant. A two-component spinor is therefore a possible 
"geometric object" for the local group. This, together with the empirical 
fact of the prominence of spinor fields in physics of elementary particles-- 
leptons, quarks--is taken as a motivation to study spinor fields on the 
exceptional lattice. 

The $4 spinors allow generalization to relativistic spinors in two ways, 
to the two types of relativistic spinors, representations (1/2, 0) and (0, 1/2) 
of SL(2C), in what follows denoted by u-spinors and v-spinors, respec- 
tively. Correspondingly, there are two matrix four-vectors: 

cr ~ = (1, a) operating on u-spinors 

a '~ = ( - 1, a) operating on v-spinors 

(a are the three Pauli matrices). 
Field equations are formulated by defining the elementary propagation 

from one sublattice to the next. The elementary propagation from a point 
P to one of its neighbors QM will involve the connecting four-vector a m 
(M = 0, 1 . . . . .  4); an obvious proposal for the contribution to the spinor 
v(Q M) in Qm by the spinor u(P) in P is 

6v = aM a'~u(p) 

The v-spinor in Q is accordingly defined as the sum of the contribu- 
tions from the five points P which have Q as their common neighbor: 

v(Q) = ~ (a m. cr)U(Q - am) 
m 

The alternation of spinor types on successive sublattices, as suggested 
by this prescription of elementary propagation, cannot be carried out for the 
three consecutive sublattices. A choice has to be made. Suppose the sublat- 
tice L(b; 1)--in abbreviated notation Ll - - t o  be the seat of a u-spinor field 
U, L2 carries a v-spinor v, and L3 again a u-spinor, denoted by u to 
distinguish it from the u-spinor U on L1. 
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The following field equations then suggest themselves, in a transparent 
notation: 

v(Q) = ~ (a K. r - K)  
K 

u(R) = ~ (a K. r  - K)  
K 

0 = ~ (a K" tr)u(P - K)  
K 

These equations of  motion respect global Lorentz invariance; but they 
seem to contradict the usual concepts of causality because influences spread 
in spacelike directions for K = 1 . . . .  ,4. Nevertheless, wave solutions o f  
these equations, in the long-wavelength limit, will be shown to obey propaga- 
tion (differential) equations o f  the usual causal type, at least in an extremely 
good approximation. 

Indeed, by substituting plane waves proportional to exp(ip �9 x) into the 
equations of  motion, with amplitudes no, Vo, Uo, respectively, one obtains 

VO = ~ (a K" 09 exp( - - i p .  ag)Uo 

UO = ~ (a K" o-') exp( -- ip" aK)Vo 

0 = ~ (aK" a) exp( - i p .  aK)Uo 

In the limit of  long wavelength, i.e., p~ << 1, and in view of 

a K = 0 (sum over all five values of K) 

this leads to 

Substitute (2) into (3): 

(1) into (2): 

Vo = - i p  " aUo (1) 

Uo = - i p  �9 ~r 'Vo (2) 

0 = -- ip �9 aUo (3) 

(p "p)vo = 0 

(p �9 p)Uo = Uo 
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The determinant of (3) being (p �9 p), if (p .p) ~ 0, then u0 = 0, entail- 
ing Uo = 0, v0 = 0. So that necessarily (p �9 p) = 0, leading to Uo = 0; (1) and 
(2) then yield 

Vo = ip " crUo 

0 = -- ip �9 a'Vo 

In the long-wavelength limit, therefore, the solutions are degenerate, 
one of the three spinor degrees of freedom being quenched. The equations 
of motion can be simplified, leaving out (3). The dispersion law is 
(p �9 p) = 0. The plane wave solutions in this limit are solutions of a "skew" 
Dirac equation of the type 

The equations that remain have a "hierarchical" structure: the spinor 
field U plays a key role in the sense that if it is zero, all fields are zero. 

This feature will be maintained in the following generalization. 
The missing degrees of freedom can be called to life by disturbing the 

equations of motion. Dislocations of the lattice could be invoked, as 
suggested in (I), as a topological perturbation achieving this aim. This idea 
proved after all unsatisfactory. Nevertheless, the situation is explored by 
formally perturbing the system by a small term, so as to embed the 
degenerate case, as follows: 

v(Q) = ~ (a K" a ) U ( Q  - K )  
K 

= Z - K )  
K 

sv(Q) = ~ (a K. a)u(Q - 2K) 
K 

Thus a direct transmission is described from a special set of next 
nearest neighbors: the block u U  is effectively broken in this way. The 
transmission occurs in the same directions as usual, but with a double 
steplength, while the effect on the vQ is reduced by a factor ~ [the notation 
u(Q - 2 K )  stands for the u-spinor in the point -2aK removed from Q]. 

These equations again lead to conditions for the amplitudes of a plane 
wave solution in the limit of long wavelength: 

Vo = - i ( p  . a)Uo 

u o =  - i ( p  "a')Vo 

~Vo = - 2 i ( p  �9 a)u o 
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Therefore p has to satisfy the equation 

( p  . p ) ( p  . p  - ~/2) 2 -- 0 

I f  p .p  = 0, Uo and Vo are both = 0, and U satisfies a Weyl equation. 
On the other hand, if p . p  = e/2 for positive values of  e, u and v obey a 
Dirac equation, with the mass m satisfying r n Z =  e/2, while 

U = (2/~)u 

Slightly redefining the variables as 

~/2 = m 2, U" = m2U,  v '  = mv  

one obtains 

Z ( aK" a)u = m y '  

E (a K. G')v" = mu 

(a K . a)U" = m y '  

The key role of  U' is again apparent: U ' =  0 entails u = v ' =  O. 

The dispersion law for long wavelengths reads 

( p  . p ) ( p  . p - rn 2) = 0  

The degrees of  freedom corresponding to (p .p) = 0 have u = v ' =  0, 
U' satisfies 

(p �9 a)U'  = 0, i.e., a Weyl equation 

The degrees of  freedom corresponding to ( p  . p ) = m  z have U ' =  u and 
u, v' obey a Dirac equation with mass rn. 

The formal introduction of  the e term into the equations of  motion, 
describing a transmission, across the u U  block, to a special set of  next 
nearest neighbors, therefore leads to a desirable perspective: the joint 
appearance, in the long-wavelength limit, of  a two-component field (Weyl 
field) and a massive Dirac field, a situation characteristic for the leptonic 
degrees of freedom. It therefore is of  interest to try and find a possible 
origin of  the ~ term. The following option presents itself. The ~ term 
describes the influence on the v-spinor of  the twice removed u-spinor, via 
the interposed U-spinor. It seems not unnatural to assume an effect, on the 
transmission from u toward v, of the excitation of  the interposed U field, 
specifically in its independent mode. With the notation U~ for this Weyl 
field, the proposed term would read 

C(U~ +(Q - K ) U ~ ( Q  - K ) ) v ( Q )  
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and the relevant equation in full would be 

C(U~ +(Q - K ) U v ( Q  - K ) ) v ( Q )  = ~ (2a K. a)u (Q - 2K) 
K 

In this way one can achieve, in the presence of a "neutrino background," 
an effectively constant coefficient leading to a mass term for the lepton, 
caused by the omnipresent neutrino background. Note that hereby is 
introduced an effectively nonlinear term in the transmission. A broader 
discussion of possible relations with interactions has to be postponed. 

It should be apparent that, in this perspective, the smallness of particle 
(lepton) masses as compared to the Planck mass would be a direct 
consequence of the paucity of the neutrino background. 

4. THREE FAMILIES 

The six-component field carries two u-spinors and one v-spinor, 
distributed in a given way among the three sublattices. It allows, provided 
one assumes also some next nearest neighbor propagation, Dirac waves 
and Weyl waves, where the Dirac mass is determined by the "background" 
of the Weyt field. 

Clearly three such fields can be formulated, corresponding to the three 
possible assignments of the two u-spinors and v-spinor to the three 
sublattices. This circumstance could be at the root of the existence of three 
families of leptons. In each of the three six-component fields the mass of 
the Dirac lepton will be determined by the corresponding Weyl back- 
ground. 

5. AWAY FROM THE LONG-WAVELENGTH LIMIT 

The equations (1)-(3) and their subsequent generalization resulted 
from an approximation, keeping only the first two terms of the power series 
of the exponential e x p ( - i p . a K ) .  As a consequence, the equations of 
motion in this approximation contain p only linearly (Dirac and Weyl 
equations). They read, without this approximation: 

vo = - i s  �9 aUo 

Uo= - - i s  " a'Vo 

~Vo = -- is �9 aUo 

where 
4 

- i s ~  = ~ a ~  e x p ( - i p ,  aK)  
K = O  
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In the realm of long wavelengths, where the experiments are actually 
situated, the components of p are many powers of ten smaller than unity; 
the next term of the power series is therefore negligible in size, but it leads 
to corrections in the dispersion law which, as it stands, will be complex 
valued, either requiring complex values of p or lowering the dimensionality 
of the collection of permitted values ofp.  It is only along the four "cardinal 
null directions," the directions of the basis vectors bK of the sublattices, 
that the reality of the first approximation holds throughout. 

It is possible, however, to recover the usual situation, i.e., a real 
dispersion law, at least in the next approximation in the power series in p, 
by making the a K depend slightly on p, in such a way that the condition 

4 
K L  GKLax a2. = g~2. 

K L  ~ 0 

be maintained (at the expense of the validity of ~4o a K = 0). The leading 
term in the power series in p then does not vanish as before, and it can be 
used to cancel the undesirable second-order term. 

This can be achieved by submitting the a K to a five-dimensional 
Lorentz transformation which leaves GKL unaltered, thereby safeguarding 
the expression for g~2. in terms of the five 4-vectors a. More explicitly, 
introduce a slightly altered set of five 4-vectors a~ K by performing an 
infinitesimal five-dimensional Lorentz transformation on the a~:" 

a~K=al~ +e2.n K, n K = ( l l l l l )  

where e is an infinitesimal spacetime vector, independent of K. The zeroth- 
order term in - is~ then is -3e~.  The second-order term in the expression 
for - is~ reads 

4 
K 2. - 1/2 ~' a,~p2.p~,aKaK 

0 

which added to -3e~ has to yield zero. In terms of the fundamental 
a-lattice, the introduction of such an e~ amounts to a shift of one sublattice 
with respect to the preceding one by this four-vector. If  the shift of L2 with 
respect to L1 is denoted by e(1)~, and similarly for the other two sublat- 
tices, one has to require that 

e( 1)~ + e(2)~ + e(3)~ = 0 

so as to ensure coherence of the combined lattice. 
The Weyl wave found in the long-wavelength limit is a solution for 

which the amplitudes u0 and v0 are zero. The propagation equation for U 
between the sublattices L1 and L2 requires only e(1) to be different from 
zero so as to compensate the second-order term in the equation of motion. 
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The other two ~ vectors are irrelevant, and no incoherence is caused in the 
complete lattice. 

The Dirac wave involves two of the three s vectors, at least if the a 
vector occurring in the next nearest neighbor influence is taken to be the 
one from U to v, that is, the second step of the two-step propagation. As 
only two of the three s vectors then are involved, the lattice-coherence 
condition can again be maintained; and here again the wave can be 
propagated up to and including the second approximation in p. It should 
be evident that this is achieved for every (small) p individually: the s vector 
depends on p. Thus for every (small) p an individual interpolation between 
lattice points leads to an individual embedding of the lattice in "the" 
continuum. In this way it seems possible to wean the lattice concept from 
an underlying continuum; the continuum that is "perceived" empirically 
appears only as an approximate concept, with very" small lack of precision 
in its definition for all particle momenta on which the empirical evidence 
for the classical continuum is based. 

6. PARTICLE ASPECT AND QUANTIZATION 

The "microscopic" equations of propagation that were postulated as 
field equations allowed a consistent interpretation only insofar as long- 
wavelength wave solutions were considered. Only those aspects of the 
fundamental propagation correspond to waves as they are used to describe 
elementary particle motions. It is therefore not quite surprising that the 
usual (anti-) commutation rules, with their strictly local character, are not 
compatible with the fundamental propagation equations on the lattice. The 
simplest case to study the anticommutation rules is the Weyl field, where 
only one sublattice is involved: in absence of the u and v fields the U field 
obeys 

4 

Y" (a K. a )U(Q - K )  = 0 
0 

This equation expresses U in the point Q - ao in terms of the values in 
the four other points, situated in another "generation," a 3-space of 
constant time (in the preferred rest frame of the lattice). The evolution of 
anticommutation rules can be studied on the basis of this equation: 
evidently local equal-time anticommutators are incompatible with this 
evolution equation. On the other hand, it is known that in the long-wave- 
length limit the Weyl equation describes the solutions to a very good 
approximation, and the usual local equal-time anticommutators are consis- 
tent with the Weyl equation. Therefore, if the lattice description has any 
validity, the quantum rules play a more secondary role than is generally 
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assumed. In the long-wavelength limit there should be no difficulties in 
interpreting the waves as usual. In particular, the fact that the leaking 
toward second nearest neighbors is proportional to the neutrino density 
introduces an aleatory aspect into the propagation of the Dirac waves as 
well, which in this way is grafted onto the quantum nature of the neutrino 
waves. 

7. REMARKS AND PERSPECTIVES 

The space-time model enunciated in (I) has here been given a fresh 
basis; the preliminary results may be of sufficient interest to warrant more 
research along these lines. The main outcome to date is the natural 
occurrence of three families of "leptons," if the waves studied here deserve 
this interpretation. Each family comprises a massive four-component field 
and a massless two-component ("neutrino") field. The mass is, in this 
scheme, induced by the density of the respective neutrinos. In the limit of 
mass zero and long wavelength, all families share the Weinberg-Salam 
symmetry group, the threefold nature of the spinor base being induced 
directly by the way the space-time lattice is a composite of three sublattices. 
The suspicion arises that the actual neutrino backgrounds of the three 
lepton families are in some way instrumental in stabilizing the lattice: the 
lattice and the three neutrino backgrounds would evolve together and 
would determine each other's continuation. But a detailed mechanism 
describing this coevolution is lacking. 

Two perspectives may deserve being mentioned. First, closer examina- 
tion of the dispersion law far from the long-wavelength limit shows, along 
the four cardinal null directions, curious bifurcations where the momentum 
is one third of the characteristic crystal momentum: such waves could be 
the basis for a description of quark degrees of freedom, as only triples of 
them allow an interpretation for total momentum in the empirical domain 
(close to zero modulo the lattice momentum). 

A second aspect of the model may be of importance in cosmological 
considerations. Momenta along the four "cardinal" null directions have 
easy access to the lattice, and in the primitive universe they may be 
preferably populated by very energetic particles. This would be the most 
direct consequence of the crystal nature of space-time: an anisotropy at 
short wavelengths. Observations of the primordial asymmetry in the cosmic 
microwave background (G. F. Smoot et al.) seem to hint at a slight 
enhancement of correlations under an angle somewhat larger than 90 ~ that 
could easily be the tetrahedral angle arccos(-  1/3). 
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